Schur Positivity and Kirillov–Reshetikhin Modules

نویسندگان

  • Ghislain FOURIER
  • David HERNANDEZ
چکیده

In this note, inspired by the proof of the Kirillov–Reshetikhin conjecture, we consider tensor products of Kirillov–Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of the Combinatorial Kirillov-reshetikhin Conjecture

In this paper we give a direct proof of the equality of certain generating function associated with tensor product multiplicities of Kirillov-Reshetikhin modules for each simple Lie algebra g. Together with the theorems of Nakajima and Hernandez, this gives the proof of the combinatorial version of the Kirillov-Reshetikhin conjecture, which gives tensor product multiplicities in terms of restri...

متن کامل

`-restricted Q-systems and quantum affine algebras

Kuniba, Nakanishi, and Suzuki (1994) have formulated a general conjecture expressing the positive solution of an `-restricted Q-system in terms of quantum dimensions of Kirillov-Reshetikhin modules. After presenting this conjecture, we sketch a proof for the exceptional type E6 following our preprint (2013). In types E7 and E8, we prove positivity for a subset of the nodes of the Dynkin diagram...

متن کامل

Fusion Products of Kirillov-reshetikhin Modules and Fermionic Multiplicity Formulas

We give a complete description of the graded multiplicity space which appears in the Feigin-Loktev fusion product [FL99] of graded Kirillov-Reshetikhin modules for all simple Lie algebras. This construction is used to obtain an upper bound formula for the fusion coefficients in these cases. The formula generalizes the case of g = Ar [AKS06], where the multiplicities are generalized Kostka polyn...

متن کامل

t–ANALOGS OF q–CHARACTERS OF KIRILLOV-RESHETIKHIN MODULES OF QUANTUM AFFINE ALGEBRAS

We prove the Kirillov-Reshetikhin conjecture concerning certain finite dimensional representations of a quantum affine algebra Uq(ĝ) when ĝ is an untwisted affine Lie algebra of type ADE. We use t–analog of q–characters introduced by the author in an essential way.

متن کامل

t–ANALOGS OF q–CHARACTERS OF KIRILLOV-RESHETIKHIN MODULES OF QUANTM AFFINE ALGEBRAS

We prove the Kirillov-Reshetikhin conjecture concerning certain finite dimensional representations of a quantum affine algebra Uq(ĝ) when ĝ is an untwisted affine Lie algebra of type ADE. We use t–analog of q–characters introduced by the author in an essential way.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014